skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gleason, A_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The evolution of non-uniform shocks produced by modulated laser irradiation or surface perturbations is relevant to studies of inertial confinement fusion and material properties at high-energy-density conditions. We present results from an experiment conducted at the OMEGA EP laser facility, where a 300 GPa shock was driven into a fused silica sample with pre-fabricated single-mode surface modulations. Using time-resolved optical velocimetry, we captured the continuous evolution of rippled shock motion, enabling a comprehensive mapping of the spatial amplitude history from formation to phase reversal in a single experiment. Initially, the ablation-driven shock inherits a fraction of the surface modulation amplitude from the sample, which subsequently grows before decaying, ultimately leading to the flattening of the rippled shock and a phase reversal. We find that two-dimensional inviscid hydrodynamic simulation of the experiment is able to qualitatively capture many aspects of the rippled shock evolution but over-predicts the initial amplitude growth. This experimental platform, capable of accommodating varying ripple wavelengths, lays the groundwork for a potential viscometry method at extreme pressures, where viscous effects manifest as differences in shock flattening times between rippled shocks of two distinct wavelengths propagating through the sample. 
    more » « less
  2. Shock–bubble interactions (SBIs) are important across a wide range of physical systems. In inertial confinement fusion, interactions between laser-driven shocks and micro-voids in both ablators and foam targets generate instabilities that are a major obstacle in achieving ignition. Experiments imaging the collapse of such voids at high energy densities (HED) are constrained by spatial and temporal resolution, making simulations a vital tool in understanding these systems. In this study, we benchmark several radiation and thermal transport models in the xRAGE hydrodynamic code against experimental images of a collapsing mesoscale void during the passage of a 300 GPa shock. We also quantitatively examine the role of transport physics in the evolution of the SBI. This allows us to understand the dynamics of the interaction at timescales shorter than experimental imaging framerates. We find that all radiation models examined reproduce empirical shock velocities within experimental error. Radiation transport is found to reduce shock pressures by providing an additional energy pathway in the ablation region, but this effect is small (∼1% of total shock pressure). Employing a flux-limited Spitzer model for heat conduction, we find that flux limiters between 0.03 and 0.10 produce agreement with experimental velocities, suggesting that the system is well-within the Spitzer regime. Higher heat conduction is found to lower temperatures in the ablated plasma and to prevent secondary shocks at the ablation front, resulting in weaker primary shocks. Finally, we confirm that the SBI-driven instabilities observed in the HED regime are baroclinically driven, as in the low energy case. 
    more » « less